Rutgers University: Algebra Written Qualifying Exam January 2013: Day 1 Problem 3 Solution

Exercise. Let A and B be complex square matrices such that $A B-B A=B$. Prove that $A B-B A$ is not invertible.

Solution.

Suppose for contradiction that $A B-B A$ is invertible.
Then B is an invertible complex square matrix.

$$
\begin{array}{rlr}
A B-B A=B \quad & \Longrightarrow \quad A B & =B A+B \\
& =B(A+I) \\
& \Longrightarrow \quad A & =B(A+I) B^{-1}
\end{array}
$$

Therefore, A and $A+I$ are similar matrices
$\Longrightarrow A$ and $A+I$ have the same eigenvalues in \mathbb{C} since similar matrices share the same eigenvalues
But this is impossible!

ALTERNATIVELY:

$$
\begin{aligned}
A B-B A & =B \\
\Longrightarrow \quad A-B A B^{-1} & =I \\
\Longrightarrow \quad & \operatorname{tr}\left(A-B A B^{-1}\right) \\
= & \operatorname{tr}(I) \\
& =n
\end{aligned}
$$

$$
\text { if } A, B n \times n
$$

But

$$
\begin{aligned}
\operatorname{tr}\left(A-B A B^{-1}\right) & =\operatorname{tr}(A)-\operatorname{tr}\left(B A B^{-1}\right) \\
& =\operatorname{tr}(A)-\operatorname{tr}\left(B B^{-1} A\right) \\
& =\operatorname{tr}(A)-\operatorname{tr}(A) \\
& =0
\end{aligned}
$$

$$
\neq n, \quad \text { a contradiction! }
$$

Thus, $A B-B A$ is not invertible.

