Rutgers University: Algebra Written Qualifying Exam January 2013: Day 1 Problem 3 Solution

Exercise. Let A and B be complex square matrices such that AB - BA = B. Prove that AB - BA is not invertible.

Solution.			
Suppose for contradiction that $AB - BA$ is invertible. Then B is an invertible complex square matrix.			
AB - B	A = B	\implies	AB = BA + B
			= B(A+I)
		\implies	$A = B(A+I)B^{-1}$
Therefore, A and $A + I$ are similar matrices			
\implies A and $A + I$ have the same eigenvalues in \mathbb{C} since similar matrices share the same			
eigenvalues Dut this is immersible!			
But this is impossible!			
ALTERNATIVELY:			
AB - BA = B			
\implies	A - BAB	$I^{-1} = I$	
\Rightarrow	$tr(A - BAB^{-}$	$t^{-1}) = tr(I)$	
		= n	if $A, B \ n \times n$
But	$tr(A - BAB^{-}$	$^{-1}) = tr(A) - tr$	$r(BAB^{-1})$
		= tr(A) - tr	$r(BB^{-1}A)$
		= tr(A) - tr	r(A)
		= 0	
		$\neq n,$	a contradiction!
Thus, $AB - BA$ is not invertible.			